On Three-Color Ramsey Number of Paths

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Color Ramsey Numbers For Paths

We prove for sufficiently large n the following conjecture of Faudree and Schelp : R(Pn, Pn, Pn) = { 2n− 1 for odd n, 2n− 2 for even n, for the three-color Ramsey numbers of paths on n vertices. ∗2000 Mathematics Subject Classification: 05C55, 05C38. The second author was supported in part by OTKA Grants T038198 and T046234.

متن کامل

On some three color Ramsey numbers for paths and cycles

For graphs G1, G2, G3, the three-color Ramsey number R(G1, G2, G3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it contains a monochromatic copy of Gi in color i, for some 1 ≤ i ≤ 3. First, we prove that the conjectured equality R(C2n, C2n, C2n) = 4n, if true, implies that R(P2n+1, P2n+1, P2n+1) = 4n + 1 for all n ≥ 3...

متن کامل

On Some Three-Color Ramsey Numbers for Paths

For graphs G1, G2, G3, the three-color Ramsey number R(G1, G2, G3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it contains a monochromatic copy of Gi in color i, for some 1 ≤ i ≤ 3. First, we prove that the conjectured equality R(C2n, C2n, C2n) = 4n, if true, implies that R(P2n+1, P2n+1, P2n+1) = 4n + 1 for all n ≥ 3...

متن کامل

On Some Three-Color Ramsey Numbers

In this paper we study three-color Ramsey numbers. Let Ki,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G1, G2 and G3, if r(G1, G2) ≥ s(G3), then r(G1, G2, G3) ≥ (r(G1, G2) − 1)(χ(G3) − 1) + s(G3), where s(G3) is the chromatic surplus of G3; (ii)(k + m − 2)(n − 1) + 1 ≤ r(K1,k,K1,m,Kn) ≤ (k + m − 1)(n − 1) + 1, and if k or m is odd, the second inequ...

متن کامل

On Some Exact Values of Three-Color Ramsey Numbers for Paths

For graphs G1, G2, G3, the three-color Ramsey number R(G1, G2, G3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it contains a monochromatic copy of Gi in color i, for some 1 ≤ i ≤ 3. First, we prove that the conjectured equality R3(C2n, C2n, C2n) = 4n, if true, implies that R3(P2n+1, P2n+1, P2n+1) = 4n + 1 for all n ≥...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2015

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-014-1507-0